

Starting Agile
Finding Your Path

Mark Shead

ISBN 978-1-945121-09-8

© 2018 Mark Shead

Tweet This Book!
Please help Mark Shead by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

I just started reading Starting Agile by @markwshead.

The suggested hashtag for this book is #startingagile.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#startingagile

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20started%20reading%20Starting%20Agile%20by%20@markwshead.
https://twitter.com/search?q=%23startingagile
https://twitter.com/search?q=%23startingagile

Contents

Introduction . 1

What is Agile? . 4
Agile Decisions 7

Becoming More Agile 12

Visualize Your Work 14
A Simple Board 15
Telling Stories 17
Story Points and Story Size 21
Simple Metrics 24

Daily Face-to-Face 26
Why Stand? 27
How to Run a Daily Face-to-Face 29

Talk to Users . 33

Regular Demos . 36
Demo Frequency 38

CONTENTS

How To Run A Demo 40

Retrospectives . 41
A Simple Retrospective 43
Retrospective Pitfalls 46

Better Stories . 48
The Importance Of Good Stories 48
The User Perspective 49
Slices Of Value 51
Splitting Stories 54

Automation . 58
Build Automation 59
Deployment Automation 61
Tool Automation 63

Testing . 64
Automated Tests 65
Types Of Tests 66
Why Test? . 70

Deliver Small Changes 72
Risk In Development 72
Deployment Frequency 73
Risk In Deployment 75
Reducing Risk 77
Aligning Development and Deployment Risk . 79

Understanding Business Value 81

CONTENTS

Sustainable Continual Improvement 85

Glossary . 89

Introduction
I help organizations write software more efficiently. This
usually involves improving agility. Teams that I coach
are often full of people who have learned Agile through
training in a particular set of practices or by watching what
other Agile teams do. This leads to a common problem.
Everyone knows what they should do without really un-
derstanding why they are doing it. This may work fine
for a time, but you aren’t Agile unless you can quickly
adapt to new situations. The what is going to continually
change.Without fully understanding thewhy, it is difficult
to retain agility and adapt.

A young couple was hosting Thanksgiving. The wife
asked her husband to cut off both ends of the ham and
put them in the pan along the side before cooking it.
He asked why, and she admitted that she wasn’t sure.
It was just the way her family cooked a ham. When
her mother arrived, they asked her. She wasn’t sure
either. She had learned the practice from her mother.
When the grandmother walked in, they asked her.
“Well, back then my pan wasn’t quite long enough
for the ham,” she said, “but it fit perfectly if we just
cut a few inches off each end.”

Introduction 2

Two generations needlessly cut off the ends of the ham,
but it did no harm. It was just an extra action, a short
ceremony that no longer served any purpose other than
preserving a childhood memory. However, I frequently
find “Agile” teams with entrenched rituals, rules, routines,
red-tape, and regulations that are incredibly harmful and
no one questions why they are there. It is not uncommon
to find groups doing the exact opposite of what Agile
principles suggest. Often, a team starts with a practice that
supports agility in their particular situation. Perhaps an
Agile coach suggests a practice without fully explaining
why, maybe it is selected by a previous team focused
on Agile principles and values, or maybe it is just luck.
As time passes the situation changes and the practice is
modified without a good understanding of the why behind
the original practice. The team eventually ends up with
ways of working that are based on a previous practice
instead of the principles which justified the original. There
is a game called “Telephone” where a message is whispered
from person to person that drifts further and further from
the original meaning with each repetition. If you don’t con-
tinuously reconcile your practices against your principles,
your organization is essentially playing this slow game of
telephone.

I wrote this book to give teams a foundation for starting
with Agile by focusing on thewhy. Books that are allwhy
and no what are not very interesting to read because most
of us are looking for practical application. A book without
any what is not particularly engaging.

Introduction 3

With that in mind, this book is going to start by answering
the question, “What is Agile?” That is the primary goal of
the next chapter. With that foundation in place, the rest
of this book is going to look at some common practices
teams find useful in following Agile. We are going to look
at general practices (thewhat) that many teams find useful
while making sure that we focus on the why behind each
practice. Keep in mind that the practices themselves should
be flexible. They are only a means to follow Agile values
and principles.

What is Agile?
Many things get called Agile–especially by people who
are selling something. If you ask the makers of paper
products, they will tell you that to be Agile you need to
write user stories on the sticky note cards (that they just
happen to sell). If you ask a consultant, you will likely hear
that it is a methodology for developing software that your
organization can learn (if you buy their services). And if,
for some strange reason, you decide to ask the makers of
orthopedic shoes to define Agile, you will likely learn that
the key to being Agile is meetings where everyone stands
up. Obviously, the more comfortable your shoes, the more
Agile your team.

You can find the actual definition of Agile in the Agile
Manifesto at agilemanifesto.org. The Manifesto makes it
clear that Agile is not a methodology. It is not a specific
way of doing software development. It is not a framework
or a process. In fact, most of the things marketed as Agile
tend to miss the point of what Agile actually is.

Agile is a set of values and principles.

The discussion around Agile often revolves around follow-
ing different practices, using various methodologies, and
even developing with specific tools. While these things

What is Agile? 5

might help a team that is trying to follow Agile, they are
not Agile in and of themselves. For example, while a team
may find that having a daily standup is helpful, the standup
is only “Agile” to the extent that it is the result of a team
following the Agile principles and values.

Once you understand this, it is easy to see that Agile is
really a collection of beliefs that teams can use for making
decisions about how to do the work of developing software.
While this means the term Agile gets subjected to a great
deal of abuse when people claim that this or that is theway
to be Agile, it also means that, if you truly understand what
Agile is, it is surprisingly flexible. Agile does not make
decisions for you. Instead, it gives a foundation for teams to
make their own decisions in ways that improve the process
of developing software.

The Agile Manifesto is only 68 words and simply says that
we can develop software better by valuing the items on the
left side of the list more than the items on the right side.
This is what the Agile Manifesto says:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documenta-
tion

• Customer collaboration over contract negotiation

What is Agile? 6

• Responding to change over following a plan

That is, while there is value in the items on the
right, we value the items on the left more.

In addition to the values of the Manifesto, there are 12 prin-
ciples that support the values. Remember, the principles are
very general and are less focused on telling you what to do
than they are on guiding you to a good decision in your
particular situation.

The principles are:

• Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

• Welcome changing requirements, even late in de-
velopment. Agile processes harness change for the
customer’s competitive advantage.

• Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference to
the shorter timescale.

• Business people and developers must work together
daily throughout the project.

• Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

• The most efficient and effective method of convey-
ing information to and within a development team
is face-to-face conversation.

What is Agile? 7

• Working software is the primarymeasure of progress.
• Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and
good design enhances agility.

• Simplicity–the art of maximizing the amount of
work not done–is essential.

• The best architectures, requirements, and designs
emerge from self-organizing teams.

• At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Agile Decisions

Since Agile is a collection of values and principles, its real
utility is in giving people a common foundation for making
decisions about the best way to develop software. For
example, consider a new project that is in discussions about
how to get the requirements from the business owner. The
suggested approach is to require the business owner write
down all the requirements and sign off on them before
beginning the work. A team that is following Agile would
say:

What is Agile? 8

While that might work, is that consistent
with our belief that we should value cus-
tomer collaboration over contract negotia-
tion? And doesn’t it violate our principle
that says the developers should be working
with the business owners every day? How
can we make this decision in a way that is
consistent with our values and the princi-
ples we follow?

Now let us consider a developer who is working on imple-
menting a feature for the business owner. The developer
realizes they need a database to make the feature work. The
first idea that comes to mind is to stop work on the feature
and build out a robust database layer that will handle not
only the needs of the feature but also provide lots of support
for other development that will be needed to build later
features. If the developer believes in the Agile values and
is trying to follow Agile principles, they would think:

But building out this layer means I will have
to delay delivering what the customer can
see as valuable software that implements
this particular feature. If I can find a way
to build just what is necessary to deliver
this feature, it will better align with my
principles.

When you have a team that is following Agile they will
be making hundreds of decisions each week in the way

What is Agile? 9

described above. That is what it means to be Agile–making
each decision based on the principles and values that the
team has decided to follow.

How you make decisions matters. You cannot try to short-
circuit things by taking decisions made by another team,
blindly doing what they decided to do, and hope to get
the same results. When a team makes decisions based on
the Agile principles and values, they should end up with a
particular way of doing their work that is based on their
unique situation. Simply trying to mimic another team’s
actions and practices won’t make your team Agile.

After World War II, Melanesian islanders were observed
trying to bring cargo planes and their supplies from the sky
bymimicking the practices they had seen performed during
the war. This included clearing the forest to make a landing
strip complete with full-size planesmade out of straw. They
also created structures that mimicked a control tower out
of bamboo and had someone sit in it wearing headphones
fashioned from coconuts.

Teams can easily fall into a similar type of “cargo cult”
mentality when it comes to Agile. The things that are easy
to notice in a highly functional Agile team are the practices
they are using, but the practices a team uses are only the
result of following Agile principles and values. The specific
practices a team happens to be using are far less important
than the reasons or foundation behind those practices. As
time goes by, a good Agile team is probably going to change
and refine the practices they use.

What is Agile? 10

A team might start with SCRUM and later determine that
Kanban is a better fit for delivering value to their cus-
tomers. A team might begin standing up in a daily meeting
and later decide it works better for everyone to stay sitting
down. Another team might start out using Planning Poker
to estimate story size and later do away with story points
and simply split stories to be approximately the same size.

It is not useless to look at practices being used by teams
that are performing well, but you cannot go looking for
practices to make you Agile. Your principles and values are
what will make you Agile. You have to look for practices
that support your principles and values. The method used
to select your practices is what determines whether you are
being Agile or not. If a practice is being selected because
it looks like a good way to follow Agile principles, it is
probably a good place to start. The same practice can work
poorly for a team if it is selected for the wrong reason.

So what is Agile?
Agile is a set of values and principles.

How does a team become Agile?
They make their decisions based on Agile values and
principles.

The decision-making process is how a team becomes Ag-
ile. The values and principles have enough flexibility to
allow teams in a wide variety of organizations to develop
software in the ways that work best for their particular

What is Agile? 11

situation while also providing enough direction to help
each team progress toward their full potential.

Becoming More Agile
So how do you “make your teamAgile?”Well, you don’t. At
least you don’t just tell everyone to be Agile, make a cake,
print t-shirts, give everyone a certificate, declare success,
and move on. Agile is not some type of award that teams
win after jumping through certain hoops. The whole point
is to develop the capability to respond efficiently to change.
This is not something that you can just do and then move
on. Obtaining agility requires an ongoing effort tomaintain
the capability of handling the unknown future. What you
should be striving for is is an environment and culture that
is always taking gradual but steady steps toward increased
agility. If every day you increase your ability to respond to
future change, then you are making progress with Agile.

With that in mind, we can slightly refine our question to:
How do you become more Agile? There are two primary
ways to increase your agility. The first way to become
more Agile is to set your teams up so they have the
opportunity and motivation to continually improve. Teams
need the ability to make small experiments and access to
the information necessary to judge the success or failure
of those experiments. They need to have (or be given the
freedom to create) tools and processes that make it easy
to get the feedback they need. This is not necessarily as
complicated as it sounds. There are many ways to get

Becoming More Agile 13

feedback, and it can be as simple as, “if we record when we
start on a task, we can figure out when something is taking
longer than normal and may need more of our attention.”

The second way to become more Agile is to implement
practices that will help your team follow Agile principles.
For example, since we have a principle that says face-to-
face is the most effective way for teams to communicate,
maybe a team room would be a good practice to follow.
Since we have a principle that teams should reflect on
the past and adjust for the future, maybe the practice of
retrospectives is a good way to follow that principle.

In the rest of this book, we are going to look at a num-
ber of practices that teams find helpful in the continual
process of becoming more Agile week after week. Even
more important than the practice, we will also look at the
Agile Principles that have led teams to those practices.
The reason this is so important is that the value you get
out of a particular practice is dependent on why you are
implementing the practice. If you implement a practice in
order to follow a particular set of Agile principles, it leaves
you in a good position to grow, adapt, and continue to
improve. If you follow a practice just because you read
it in a book, you are not setting your team up for long-
term success in dealing with change in the future. Blindly
following practices makes you more rigid and less Agile,
but following principles enables you to evolve the practices
to your changing needs.

Visualize Your Work
• Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

• Welcome changing requirements, even late in de-
velopment. Agile processes harness change for the
customer’s competitive advantage.

• The most efficient and effective method of convey-
ing information to and within a development team
is face-to-face conversation.

Attempting to follow any of these principles requires hav-
ing some way of understanding the state of your software
development efforts. You cannot continuously deliver valu-
able software without having some way of knowing what
the status is for various pieces of work. You cannot even
tell what work is valuable unless you have some way of
communicating that X ismore valuable than Y. It is difficult
for teams to have any type of meaningful conversation
about the work if there is not a clear way to see who is
doing what. It is hard to welcome changing requirements
if you don’t know what is currently being worked on, what
has been completed, and what has yet to be done.

There are scores of ways to keep track of what a team is
working on. However, if we reallywant to facilitate face-to-
face discussion, it is very beneficial to have something that

Visualize Your Work 15

can be viewed by multiple people at the same time. If our
priority is to harness change as a competitive advantage,
then we need to make it easy to see how our work may be
different today than what we thought it was yesterday. If
we want to continually deliver software, we need to have
an easy way to know what is in the current version and
what is coming up next.

A Simple Board

I am going to describe a simple way to visualize your work
in order to support the Agile Principles mentioned above. It
is a good place to start, but the goal is to support the Agile
Principles. If you find a way to change things so your team
can better support those principles, by all means, do so.

Take a section of wall or whiteboard and divide it into four
sections. One section will be for things you probably want
to do, the next section will be for things you are getting
ready to do, the next section will be for things the team is
currently doing, and the last section will be for things that
are completed. You also need an easy way to add or remove
a column if you find away to improve theway youwork, so
do not create these sections in stone where they cannot be
modified. A whiteboard works well because you can write
your headings and just rearrange them later. Painters tape
works well on a wall because it is easy to pull down and
restructure when the need arises.

Visualize Your Work 16

Should we use software?
Do not overlook the value of a tactile system that you
can touch, point at, and move around. Even if you
plan to switch to a virtual board, it can be good to
start with a physical board that is easy to manipulate
and rearrange.

Title the sections:

• Backlog
• To Do
• In Progress
• Complete

Use sticky notes to write down what you are working on
and put them under the appropriate headings. You now
have a very easy to update, visual, flexible way of keeping
track of what is being worked on.

Visualize Your Work 17

A simple board

Telling Stories

The fact that you are using sticky notes to represent your
work places certain constraints on how much information
you can record. What should you put on the note? You
could try to list the step-by-step details of what you want
to do, but that can take a lot of time and space, and you
probably will not know what needs to be done until you
actually start working on it.

One method that works well for many teams is to think
of the note as a very short story that tells how the world
will be different from the user perspective when you have
successfully completed the work. Here are some example
stories:

Visualize Your Work 18

• A registered user can log in to the application and
then change his/her password.

• A user can make a payment using their credit card.
• If the flux capacitor gets locked up, an email is sent
to the emergency email address.

An important key for creating stories is to make it easy to
tell when it is completed. You do not want to fill the sticky
note with all kinds of details that will be worked out in the
process of completing the story, but you do want it to be
fairly easy to say, “Yes, the application now does this” or
“No, we aren’t quite finished.”

It is vital that stories be written from the user perspective—
not the developer. They tell how the user’s world will be
different when the story is marked complete. Consider the
following stories:

• The application has data access objects for the data
model.

• A user can register and create an account.
• Spring Security is configured.
• A user with an incorrect password is shown an error
message.

It should be easy to spot the stories that are written from
the user perspective and see the ones that are written from
the developer perspective. The obvious objection is, “But
we cannot create an account until we have the data access

Visualize Your Work 19

objects to save the account to the database.” This is not quite
true. You do not have to build all the data access objects
in order to create an account. You only need to build the
ones that are necessary to demonstrate the functionality
to the user. Why does this matter? Look at the following
principles.

• Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

• Working software is the primarymeasure of progress.

Working software means it does something for the user. No
matter how beautiful our code and architecture, the goal
is to create software that gives the user business value. If
we use stories that are measuring something that does not
result in working software for the user, we are violating
our principles. Early delivery of valuable software means
we need to focus on the value we can provide today—not
on creating infrastructure to provide what we think might
be valuable tomorrow. If we prioritize a story to build out
a layer of architecture over a story to build something we
can deliver to the user, then we are violating our principles.

Creating stories that focus on how the system will be
different from the user perspective can be extremely chal-
lenging at first—especially when you try to keep the story
size small. We will address this in a later chapter, but the
takeaway for right now is that your stories need to tell
how the user world looks different when the story is done.
Doing so follows our principles about being focused on

Visualize Your Work 20

the business value that is being frequently added to the
application and helps prevent the creation of code before
it is needed.

It can sometimes help to have a template for writing these
stories. One popular format is something like the following:

As a ________________________

I want to ________________________

So I can ________________________

Let’s see what some of those would look like:

As a registered user
I want to change my password
So I can keep my account secure

As the system
I want to monitor the flux capacitor
So I can notify the emergency address if it locks up

This type of format does a good job of helping you remain
focused on how a user wants to be able to interact with
your system, so youwill often see people referring to stories
about their users as “user stories.” Notice, there is nothing
that keeps you from writing a story about the system itself
or other things if the story is still about the user’s world.
You may find that a different template works better for
your team. The goal of using a template is to give some
consistency while avoiding any type of writer’s block. It is
often easier to fill in three blanks than writing the story
from scratch.

I would highly recommend at least trying the template

Visualize Your Work 21

above, but do not stick with it if you find something else
that works better for your team. The important thing is
to make it easy to know whether you have completed the
work or not. A short story about the way the user’s world
will look and behave when you can mark it as complete is a
good way to do that regardless of the particulars that your
team decides to use.

I was once helping a team switch to this style of
stories, but one product owner was out the week we
started. On his return, he asked one of the develop-
ers, “Why does Mark keep sending me this weird
poetry?” Evidently he thought I was writing some
strange form of Haiku. Forget the Agile coach! Let’s
get a bard to write some poetry.

Story Points and Story Size

If you follow this approach, you will quickly discover that
there can be a lot of variance in how big a story can be.
Consider the following two user stories.

As a web visitor
I want to click on the word “Home”
So I can return to the home page

Visualize Your Work 22

As a web shopper
I want the site to support e-commerce
So I can do everything related to orders

The first story encompasses very little. In fact, the story
is so small that it might take about the same amount of
time to write the story as it would take to implement it.
The second story is huge. It seems to encompass everything
from placing orders, handling returns, calculating shipping
and taxes, to managing inventory. These examples are
obviously two extremes, but they demonstrate that you can
write stories that require a small amount of work and you
can write stories that require a very large amount of work.

One way to get an idea of how long a story will take is to
assign a number of points to the story. Basically, you come
up with your best guess. A story that is assigned a 10 will
take 10 times as much effort as a story that is assigned a
1. There are lots of ways to come up with these numbers
and some teams make something of a game of it. This is
not necessarily a bad approach, but it does take time and
in most cases, it is not particularly accurate. The value you
get out of estimating needs to be compared with howmuch
it costs. I’ve seen some teams spend up to one-third of their
time in a particular week estimating the size of the stories.
It is unlikely that these estimates are providing value that
exceeds the cost of doing 33% less development.

To minimize the time commitment made to estimating,
some teams try to do it really quickly. For example, they
might have everyone assigning a number to how big they

Visualize Your Work 23

think a story is and then averaging them with maybe a
little discussion on the ones that have a lot of disagreement.
Other teams try to size stories with “t-shirt sizes” of Small,
Medium, Large, and X-Large.

Aside from the amount of time it takes to estimate, “story
points” and “t-shirt sizes” both have an even bigger prob-
lem. Trying to estimate the size of stories encourages you to
go ahead and leave in big stories that really could be broken
down into smaller units of work. Why are big stories a
bad thing? If you are following the principle of delivering
software on a regular basis, large stories slow this process
down. They alsomake it more difficult to adapt to changing
requirements. If you can get a smaller story into production
that the customer can start using, they may realize there is
a missing requirement or even that they do not want that
functionality after all. Small stories let you follow the Agile
principles.

Another approach that often works better than story points
is to try to make your stories roughly the same size. What
that size is depends on your team. You typically don’t want
your average story size to be more than a few days worth
of work. If you see a story that you know is going to take
a week or more, it is a strong indicator that it can be split
into multiple separate stories.

You may end up with some stories that only take six
hours and have an occasional outlier where you run into
problems and it ends up taking a week or two. That may
seem like quite a range, but once you have some history,

Visualize Your Work 24

you should be able to get an idea of howmuch time it takes
to complete 10 stories if they have all been broken down to
what you think will take nomore than a few days. The ones
that go fast will average out with the ones that take longer.

Small stories also give you faster feedback if it turns out
things are much more difficult than they initially look. A
particular aspect of functionality may turn out to be much
more tricky than it initially looked. You start with a small
story that looks like it will take two days, but instead it
takes five times as long–ten days. After this discovery, you
now have a much better idea of how long it is going to take
to do other similar stories. Maybe the business owner will
decide there are other parts of the software that are a higher
priority. Or maybe, you will decide that you need to take a
different approach or use a different type of technology. On
the other hand, if you have a large story that you estimate
will take ten days and it ends up taking five times as long,
you will probably end up doing a lot more work before
evaluating your approach and the value of that story. Large
stories slow your feedback loop making it harder to adjust
to the information you learn in the development process.

Simple Metrics

If you need to capture metrics, the simple board approach
works surprisingly well. You can just add the date when
you start work on a story to the note. When you finish,
add the number of days it took to complete. You will end

Visualize Your Work 25

up with a stack of notes that will give you a pretty good
view of how long it takes to complete a story. (You can
even arrange them on another wall as a histogram by the
number of days they took to complete to give you an idea
of what your cycle time bell curve looks like.) This can be
useful to give you feedback about how well your team is
doing at sizing the stories. It can also be a useful indicator
of whether other changes to your processes are helping or
hurting your progress.

If over a few months, your stories take an average of
three days to complete and you suddenly notice that your
average shoots up to eight days, it is worth taking a look
at what may have caused that change. Perhaps you have
several people out on vacation.Maybe you tried using some
new technology, and it is taking a while to handle the
learning curve. Maybe you are trying to work on too many
things at the same time. Maybe you changed some other
aspect of your development process, and it is not working
out quite as well as you hoped or causing unexpected
side effects. A big change in the average time it takes to
complete a story does not directly tell you what is going
on, but it can be a useful tool, almost like a speedometer of
a car, to identify when changes are helping or hurting the
development effort.

Daily Face-to-Face
• The most efficient and effective method of convey-
ing information to and within a development team
is face-to-face conversation.

• Business people and developers must work together
daily throughout the project.

• Working software is the primarymeasure of progress.

If your team wants to follow the principles of communi-
cating face-to-face and working together, you are going to
have to make sure people actually get together in the same
room and talk. Following these principles can become very
natural, but many working environments are anything but
natural. A great practice to help encourage this is to get
everyone together for a brief daily face-to-face meeting
with the purpose of making sure that you do not have any
communication friction slowing down any of the stories as
they move from the to-do to the complete column.

It is not necessary to try to cram in every conversation that
needs to occur. The goal is to have a daily meeting that is
designed to highlight the conversations and work that are
necessary to move each story forward. Most teams refer to
this meeting as the daily standup.We are going to also refer
to this meeting as the daily face-to-face to help highlight
that the principle we are trying to follow is face-to-face

Daily Face-to-Face 27

communication. There is not any principle that says “teams
are more effective when they stand for a meeting.” That is
not to say that the idea of a standupmeeting is not valuable,
just that we need to be clear what principles our practices
are trying to follow.

Why Stand?

Why do some teams call it a daily standup? As the name
implies, a standup meeting is conducted standing up. This
is simply an aspect of the practice that many people have
found useful because it helps encourage the meetings to
be short and to the point. Standing helps make everyone
aware if the meeting goes on for too long and also helps to
get people up from their desk and away from distractions
so everyone can focus on the meeting. Getting your team
together even for a short meeting is a pretty big investment.
Standing ensures that themeetingwill be efficient, focused,
and short.

I have participated in meetings where what they call the
stand-up is conducted sitting down. The point is not that
standing is somehow magic, but if you do a sitting face-
to-face meeting you may need to put a little extra effort
into making sure everyone is engaged and the conversation
stays focused.

Daily Face-to-Face 28

A distributed team was doing their daily stand-up
on video conference. People tried to stand at their
individual desks, but then the cameras only captured
their midsection. It didn’t take long to decide that
sitting face-to-face interactions were far superior to
standing stomach-to-stomach meetings.

Calling the meeting a “stand-up” keeps the team focused on
the physical position they will assume during the meeting
while calling it the “face-to-face” keeps everyone focused
on the Agile principles driving the meeting. This is similar
to the difference between calling a pool of water a “prone
pool” to highlight the position in which most people swim
vs. calling it a “swimming pool.”

Of course, it is not necessary to go through your organiza-
tion and force everyone to use the term “daily face-to-face”
instead of “daily stand-up.” Just be aware that when we use
names that obscure the reason behind an activity, we must
be extra careful to stay focused on the why that is driving
that activity.

So, regardless of whether you sit or stand, how long should
this daily face-to-face meeting be? For most teams, 15 to
20 minutes seems to be an effective target. Obviously, the
length can vary significantly from day to day and from
team to team, but trying to hit something near the 15
minute mark is usually reasonable.

Daily Face-to-Face 29

One of the reasons you want to keep the daily face-to-face
meeting brief is because people need to be fully engaged,
and that means they cannot feel as though the meeting is
wasting their time. These meetings require a significant
commitment for people and if they do not feel they are
valuable, you will have a hard time getting people to show
up on time.

How to Run a Daily Face-to-Face

Some people like to run face-to-face meetings where every-
one tells what they did yesterday and what they are going
to do today. This can be helpful because it makes sure that
everyone knows what their teammates are working on, but
it does have a downside. Think back to how we measure
success. If we measure our ability to deliver working code,
our face-to-face meetings should have the outcome of
helping make the production of that code as efficient as
possible. The way we visualize success is by getting stories
from the to-do column to the completed column. If that is
what we are trying to optimize in the face-to-face meeting,
then we need to focus our discussion on the movement of
those stories across the board. Meetings that focus on what
people are doing are going to carry a lot of overhead that
does not contribute to the movement of those stories.

Most companies have cultures and processes that are not
designed tomake the production of softwaremore efficient.
In fact, at many companies you would probably conclude

Daily Face-to-Face 30

that things have been designed specifically tomake the pro-
duction of software less efficient! When you run a people-
centric face-to-face meeting, you often end up investing
your time talking about how people are dealing with com-
pany culture and processes. The fact that half the team did
their mandatory security/sensitivity/assertiveness/humili-
ty/acronym or whatever training yesterday and half are
going to do it today may need to be mentioned, but only
within the context of how it relates to the work that is going
to produce software. Story centered daily meetings help
keep the discussion focused on how to efficiently move the
stories toward completion and tend to reduce the amount of
time spent on topics that are not going to help move stories
from left to right.

I have been in daily face-to-face meetings
where 75% of the time is spent listening
to each team member state that they are
going to do their quarterly evaluation that
day or that they did it yesterday. This is
an extremely expensive use of time and it
doesn’t help move stories across the board
toward completion.

You want to focus on the stories that are in-flight because
those are the ones that are closest to providing value to the
user. If the people working on the story tell the status and
mention any impediments they are running into, they have
covered all that is necessary. When someone mentions
an impediment, other team members are probably going

Daily Face-to-Face 31

to try to jump in and help. This is exactly what should
happen, but you cannot let each story turn into an hour-
long troubleshooting session. If the team cannot solve the
issue in 30 to 90 seconds, simply determine what the next
step is going to be. Often the next step is for the people
involved to discuss the issue right after the face-to-face
meeting.

This is where most of the value of having a daily face-to-
facemeeting occurs. Everyone is in the same room and they
discover things that need to be communicated. After the
meeting, everyone can have those additional conversations
while they are there face-to-face surrounded by the people
who they may need to consult for clarifications or help. It
should be very common for a stand-up meeting to end, a
few people keep talking about a particular story, and then
head down the hall to ask someone else in the organization
a question that will help move that story forward.

Once you walk your way through the stories that are in-
flight, it is often useful to check to see if there are any
announcements that need to be made. This is a good place
for team members to mention any general items that need
to be communicated but are not story specific. For example,
a developer might mention that they are going to be out for
a doctor’s appointment that afternoon so if anyone needs
to discuss something they should do it before lunch. The
team lead might mention that the version control system is
going to be down for an upgrade in the morning, etc.

Usually, face-to-face meetings go better if someone is re-

Daily Face-to-Face 32

sponsible for running them. This can be the team lead or
manager, but it is a team meeting and you will usually get
better ownership and buy-in if you let the team members
take turns leading. Some teams work through who leads in
a specific order—maybe alphabetically. You can let people
just volunteer to lead each day, but then you are likely
to get the same people every day. You also do not want
a process that delays the start of your meeting by a few
minutes each day while you figure out who runs it.

Some teams create a chat bot to randomly
select a member and post their name to the
team messaging system five minutes before
the daily meeting. This reminds everyone to
get ready and helps prevents a discussion
about who is going to run the meeting from
taking up valuable time.

Talk to Users
• Business people and developers must work together
daily throughout the project.

• The most efficient and effective method of convey-
ing information to and within a development team
is face-to-face conversation.

People who do not create software for a living typically
assume that developers talk to users about what the users
need, write some code to do what the user asked for,
show it to the user to get feedback, and so on. They
picture users and developers gathered around a table for
discussions and around a computer screen to see the code
in action. These are reasonable assumptions. It is obvious
that developers and users are going to have to collaborate
to create useful software. Unfortunately, that is not the way
many organizations develop software applications. In fact,
it almost seems like some places intentionally go out of
their way to create processes that make it hard for users
and developers to work together.

I was doing some consulting for a large bank that was try-
ing to improve the efficiency of their software development
process. After attending a few meetings, I realized that the
person I thought was the user was not actually someone
whowas going to use the software. It turned out this person

Talk to Users 34

thought their job was specifically to keep the developers
and users from talking to each other. I started asking what
had prompted the creation of a role like that and traced it
through the organization until someone finally toldme that
a famous big consulting company had told the bank to hire
someone with that role as part of a set of recommendations
several years earlier.

This still did not make much sense. After several months I
happened to run into someone at a restaurant in New York
who worked for the consulting company and discovered
he had been a part of the project. I explained that the bank
had introduced a new role tasked with keeping users and
developers from talking to each other based on his com-
pany’s recommendation. A horrified look crossed his face
and he said, “No, that isn’t at all what we recommended!”

Why does Agile make such a big deal of getting developers
and users to talk to each other? Organizations have a
tendency to create structures that keep this communication
from taking place. Sometimes this is driven by political
forces as people attempt to consolidate power by con-
trolling the flow of information. Sometimes it is caused
by efforts to make communication more efficient without
fully understanding that the efficient creation of software
requires two-way communication. Whatever the reason,
companies find it very easy to create barriers to commu-
nication between developers and users. The bank in my
story somehow was able to create new positions and hire
people to fill those positions without anyone stopping to

Talk to Users 35

ask if creating a barrier to user/developer communications
was really a good idea.

Software is created because it provides some type of value
to someone. Those people are the users. The more layers
an organization puts between the people who are creating
the software and the people who are using it, the more
inefficient the process is going to be. This does not mean
your users need to be involved in every single detailed
technical discussion about how code is being written, but
it does mean they need to be close enough to the process
to provide feedback that can guide the development so the
end product will best meet their needs.

Regular Demos
• Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

• Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

• Working software is the primarymeasure of progress.

Agile projects are built on trust, and the best way to
establish trust is through transparency. Regular demos for
users are one of the best ways for teams to be transparent
about what progress has been made. Development should
not be a black box from the user’s perspective. The end
users should be able to watch the software developing and
provide feedback as it takes shape. Regular demos can help
accomplish this.

Most users who have experienced a few software devel-
opment projects are very familiar with projects that are
scheduled to take 12 months that spend the first 10 months
getting to 90% completion–and another 12 months finish-
ing the remaining 10%. Demos help solve this problem in
several different ways. First, demos help focus the develop-
ment work on pieces of functionality that are actually us-
able. This may mean building some parts of the application
in a simpler way, just so other parts can be demoed. This

Regular Demos 37

might seem trivial, but a focus on getting the application
to a point where a feature is actually usable makes a huge
difference in avoiding the false progress many projects see
at the beginning that is followed by a dramatic slowdown
at the end.

Second, the focus on creating functionality that can be
demonstrated means that if the business owners are not
happy with the timeline for when software is going to
be ready to use, they can cut scope to finish sooner. If
a team has not been focusing on software that can be
demonstrated, the code that has been written is going to be
much further from being in a usable state. Even if all the
remaining scope is cut, there is still going to be a massive
amount of work to get the “completed” features usable.

Third, demos help reduce the amount of rework that oc-
curs. The simple fact is that no matter how hard users and
developers try to communicate, there will be times where
things will not be clear until they sit down and use the
software. The sooner this happens, the less code will be
built on incorrect assumptions.

I was workingwith a team that was building some software
for the Treasury that was doing demos every two weeks.
At one of the demos, the team walked through how to
use the application for a particular function. The business
owner questioned whether it was following the business
rules correctly. Several of the users said it was correct, but
after some more discussion, it became apparent that there
were nuances to the business rules that even the users did

Regular Demos 38

not fully understand. Had it not been for the demo, this
would not have been discovered until much later on and
much more of the application would have been built on
top of the faulty understanding.

It is ideal to have an actual user or a business
owner controlling the software in a demo.
What if they do something that wasn’t ex-
pected and it breaks? That is exactly why
they should be doing it instead of a devel-
oper.

Demos need to demonstrate real working software. Walk-
ing through a series of screen mockups may be useful, but
it does not count as a demonstration of working software.
Demos should prioritize transparency over polish. If you
have to manually load something into a database table to
illustrate part of the user interface, do not hide that part
from your demo. Everyone needs to know what has been
built and what has not.

Demo Frequency

How often should you do software demos? It depends, but
most projects have some sort of cadence that creates a
natural place to demonstrate the functionality that has been
built. If you are using sprints, it probably makes sense to
do a demo at the end of each sprint. If you are not using

Regular Demos 39

sprints, you may need to pick something of an arbitrary
length of time. For most projects, two weeks is usually a
reasonable interval. For some projects, one week will work
better. Some projects even work well with a demo every
morning—especially if the developers are working from the
other side of the world and demonstrate what they have
completed at the end of their workday to stakeholders who
are just starting theirs.

If demos are too frequent, it may be difficult to get high-
level stakeholders to attend every one. On the other hand,
with less frequent demos, if someone misses a single meet-
ing they will not be able to participate in another demo for
quite some time. Usually, longer periods between demos
is more risky than the risk of some people occasionally
not attending. Keep in mind, demos are establishing trust
through transparency. For some high-level stakeholders,
the knowledge that you are doing a demo that they could
attend may provide a level of trust even if they are not able
to actually be there.

There is a tendency to schedule demos around how much
work is ready to demonstrate. While no one wants to have
a meeting to demonstrate software and not have anything
to show, it is important to carefully distinguish between a
problemwith demos being too frequent and a problemwith
not building in small enough slices of work.We explore this
in more depth in the chapters on Better Stories and Deliver
Small Changes. Not having anything to demonstrate is
likely a symptom of the real problem. If a team does not

Regular Demos 40

have anything to demonstrate every twoweeks, you should
first try to redefine the work into smaller pieces so you will
have new functionality in a state that you can demonstrate.

Do not forget you are striving for transparency over polish.
If you need to demonstrate how the application lets you fill
out a form but do not have the page that displays the data,
show that the data gets saved into the database. It shows
what work has actually been accomplished and maintains
the transparency that is vital for high-trust teamwork to
occur.

How To Run A Demo

If the idea of a “software demo” makes your organization
think of a slick presentation with one person standing on
a stage in front of a huge screen walking through a new
piece of software, then call the demos something else. Your
demos are not to put on a show or make the software look
better or more complete than it is. The goal is to honestly
communicate what features are complete and how they
work.

If possible, you want the person driving the computer to
be the person who will use the feature being demoed. This
helps make sure that the demo shows what a real user is
going to do. It also helps make sure that the demo does not
look like a staged walkthrough of a mock-up.

Retrospectives
• At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

• The most efficient and effective method of convey-
ing information to and within a development team
is face-to-face conversation.

Change is expected and vital to progress. This applies
to the code you are writing as well as your processes.
Requirements may change to respond to the market or a
new understanding of the problem being solved. It also
applies to the way the team works together. Just because
you did something one way yesterday, does not mean it is
the way you should do it tomorrow. Agile explicitly says
that teams need to take time to talk about how things are
going and how they can work together better in the future.

Many teams do this through something called a retrospec-
tive. This is simply some time set aside to look for ways
to work better. There are different ways to do retrospec-
tives and you can find entire books specifically dedicated
to opinions on the best process. In addition, there are
many publications and articles on how to create continuous
improvement in an organization. You will never exhaust
all the possible ways to do retrospectives, but it is NOT

Retrospectives 42

important for them to be “perfect.” Teams need to create
a culture of gathering feedback and using it to create
improvement. As long as you are taking steps toward that
type of environment, you are doing it right.

To get the most value out of this type of team reflection,
people need to be engaged. Simply having a meeting that
you call a retrospective does not automatically guarantee
that everyone is engaged in reflecting and making adjust-
ments. A mature Agile team that has truly internalized
the goal of reflecting on their processes to make improve-
ments can easily have a retrospective process that looks
entirely chaotic. I have observed some teams that have no
formally scheduled retrospective because they do not need
a schedule. Whenever a team member has a concern or an
idea, they all simply take the time to talk about it, make a
decision, and move forward.

One team I coached had a growing concern because they
had not scheduled a retrospective in the last few months.
While this was technically true, they had ad hoc retro-
spectives all the time—sometimes multiple times per week
depending on what was going on and what needed to be
addressed. Someone would send an instant message saying,
“I don’t think X is working very well, can we talk about it
after stand-up?” After stand-up, they would discuss ways
to improve, make a decision and then move forward. They
still did formal retrospectives from time to time, but those
were not where the bulk of the retrospective work was
occurring.

Retrospectives 43

I almost did not tell the story of this team because it
is so easy to look at what is working for another team
and simply mimic it in your own. This team had found
a way to follow the Agile principle of regular reflection
that workedwell for their team dynamics, their individuals,
their personalities, their working hours, etc. Your team
will have its own dynamics, individuals, personalities, and
working hours. Don’t expect the optimal process for your
team to look like the optimal process for another team.

A Simple Retrospective

Here is a simple way to do a retrospective. Place three
sticky notes spaced out a few feet from each other on
the wall. One should have a smiley face, the second a
frowny face, and the third a thumbs up. Give everyone
on the team their own sticky notes and ask them to write
down things that they feel are going really well and put
them under the smiley face, things that they think need
improvement under the frown, and anything they want
to call out positive about another team member under the
thumbs up.

It can be good to limit everyone to only adding two notes
under the frown to make sure people stay focused on their
highest priority and to reduce the amount you have to
sort through. You also want to make sure the team is not
overly focused on negative aspects of how things are going.
Looking for ways to improve can also mean celebrating

Retrospectives 44

your success and trying to keep doing things that are
working well. No limit is usually needed for the smiley
face and thumbs up. Set a time limit of 10 to 15 minutes
for people to fill out their sticky notes and put them on the
wall.

Have someone read through the smiley face and thumbs up
notes. Usually, this does not take too long even if there are
a large number of them. Since the frown section represents
things you want to improve, you have to approach those
more carefully. Read through them and try to group notes
that represent the same thing by sticking them together.
You may need to ask for clarification especially to see if
the team agrees two notes represent the same core issue.
The grouping helps make sure you do not end up splitting
the vote count when the team selects what they want to
work on.

It is important that the team stay generally
focused on things they can influence. If no
one likes the president of your organization,
there may not be any legal steps you can
take to change that. You are looking for
things you can solve or improve not just
things to complain about.

Once the grouping is done, let everyone vote on what
they would like to address. A simple approach is to letting
everyone vote with a check mark, star, dot, or sticker on the
issue they would most like to see addressed. Give everyone

Retrospectives 45

a limited number of votes—typically two is a good number.
When everyone is done voting, arrange the grouped notes
in order with the highest votes at the top.

The next step is to pick some actionable step you can take
to improve what the team has indicated as the most critical
issue. You can try to address more than one if you have
extra time, but it is probably best to start with one because
you do not know how much discussion is going to be
necessary.

The team is not trying to solve every aspect of the issue.
They are trying to find something that they think will
make things better and commit to doing that thing. I have
seen some teams identify that broken builds were the most
significant issue and then commit to making doubly sure
that they run all the tests locally before checking back
in code. Another team decided that their biggest issue
was the way the rest of the organization perceived trivial
problems with the software and committed to write a short
article about their successes in the organization’s monthly
newsletter. Another team brought up issues in the way they
worked together and made some commitments to practice
more respect in their interactions.

Sometimes the issue can be fixed on the spot, but often
you’ll only be able to make a small commitment to some-
thing that makes an ongoing improvement. You may need
to keep that commitment in front of the team. This can be
done by posting it on the wall or spending 10 seconds to
review it as part of the daily face-to-face meeting.

Retrospectives 46

Retrospective Pitfalls

In a healthy team, everyone should be able to conduct the
retrospective. Not all teams are healthy, however, and the
person facilitating the retrospective could end up as the
brunt of an emotional outburst. It can make sense to have
someone who is comfortable with those dynamics and is
skilled in keeping a pulse on how everyone is interacting
lead the first few retrospectives.

I have participated in a few retrospectives that were, let us
just say, “uncomfortable.” Retrospectives tend to magnify
any existing dysfunctions in the team. I have literally
witnessed team members start jumping around screaming
at each other until one of them stormed out of the room.
Fortunately, that is not a normal retrospective, but it is a
good reminder that the process of reflecting on ways to
improve the way you work requires significant trust.

In the ideal world, every team member should be com-
fortable fully participating in the retrospective and even
running the retrospective. As we mentioned above, some
teams have worked together for years and have a high
degree of trust where everyone feels empowered to call
an ad-hoc retrospective whenever they see something that
could be improved. Not everyone may be comfortable do-
ing that–especially with a newly formed team. Sometimes
it is helpful to have a facilitator run a few retrospectives and
really focus on building trust until everyone is comfortable
sharing their opinion and ideas. Ultimately though, the

Retrospectives 47

process of reflecting needs to be owned by and driven by
the team itself.

The exact details of how you regularly reflect on ways to
become more effective are not important. What is impor-
tant is making sure that you are regularly investing time
into looking for ways to improve, and that your whole team
is comfortable speaking up about problems and potential
solutions.

Better Stories
• Working software is the primarymeasure of progress.
• Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

• Simplicity–the art of maximizing the amount of
work not done–is essential.

We have briefly touched on the topic of creating stories
from the user perspective. In this chapter, we will consider
how to create good stories in more detail.

The Importance Of Good Stories

In the Visualize Your Work chapter, we covered the impor-
tance of representing work visually because it is easy to see
what has been done, what is being done, and what is yet
to be done. We visualize our work through simple stories
that describe what the user’s world must look like in order
to mark a story as complete. Here are some example stories
using a typical story template.

As a registered user
I want to change my password
So I can keep my account secure

Better Stories 49

As a website visitor
I want to subscribe to the mailing list
So I can get product updates through email

As an admin user
I want to disable a user
So I can prevent unauthorized logins by past employees

As a mobile app user
I want to save all my data to the cloud
So I can access it from another device

There is not anything magical about this story template. If
you find a better format for your team, by all means, use
it. Having a template to follow is a good way to make sure
no one suffers from writer’s block when it is time to write
down a story.

Our development efforts are driven by stories that repre-
sent our understanding of user needs. Stories written in
ways that support our principles will foster good devel-
opment practices. Stories written in ways that violate our
principles will hinder good development practices. Any-
thing we can do to increase the quality of our stories will
make the rest of our development process more efficient.

The User Perspective

Effective stories start off as fiction. The setting is the world
in which the user interacts with the software. Stories are
written from the user’s point of view and talk about things

Better Stories 50

from the perspective of the user. The user perspective is
critical because our principles say that we are going to
define our progress based on giving the user the ability to
do something with the software that they were not able
to do before. If we are working on stories that are not
creating business value for the customer, we are working
on stuff that we have explicitly said is not going to count
as progress.

So, how do we handle all the work we need to do that
the user cannot see? How do we handle stories about the
developer’s world? How do we handle stories like this?

As a developer
I want to create a database that models the data
So I can store information the application needs

This is a bad story because it violates our principles for
software development. Notice I said the story is bad, not
the idea of having a database to store data. We definitely
need a database to do this, but if we create this story, almost
all of the application depends on it to be done first. We can
complete this story and have no functionality to show our
users–nothing they can actually use as working software.
This violates our principles. Further, the information we
need to acquire to complete this story will only be known
when we figure out how we are going to build other parts
of the system. So in effect, a story like this is both a
prerequisite for and a dependency on every other story in
the system.

When you have two things that both depend on the other

Better Stories 51

being done first, you have a recipe for deadlock. If you have
ever worked on a story like this, you may have experienced
a long period of time where the user is asking how things
are going and the development team is saying, “Well, we
have a bunch of setup work to do first before we can start
working on the actual application.”

There is another way. If you write your stories from the
user perspective, you will build just the parts you need in
order to create some value for the user. This likely will
mean building some of the database, but only the pieces
you need as you need them to complete each story.

Slices Of Value

If we want to create stories from the perspective of the
user, we need to think about the application the way the
user thinks about it. Developers tend to see the application
as a stack. There is the hardware at the bottom. On top
of that is the operating systems. Then comes the database
and application server. Then we have a database access
layer. Above that is the service or business logic layer.
Somewhere above that is the code that is responsible for the
user interface. Everything is stacked on top of each other
like a cake. So, a developer is likely to think in terms of
stories like:

Better Stories 52

As a developer
I want to create a service layer
So that the application logic is separated from the UI.

As a developer
I want to create a UI layer
So that the user can interact with the system.

Having a service layer is good. Having a user interface layer
is good. Having stories to build each of these layers violates
our principles, but it is easy to see why we might end up
with stories like the above examples when we recognize
the way developers think about an application. But what
about the user? If our stories should be fiction from the
user’s point of view, we need to think about how they think
about software applications.

A user will think of an application as a collection of
behaviors they find valuable. They might think of an
accounting system as consisting of the part that lets them
create invoices, the part that lets them pay bills, and the part
that lets them balance their accounts. They may know that
creating an invoice means doing something in the GUI that
gets passed on to the business rules and eventually ends
up in the database, but that is not how the application is
organized from their perspective.

If a developer sees an application as a collection of layers
of cake that are stacked on top of each other, then users see
the application as a collection of slices of cake that represent
the different things they need to do. The fact that there is a
database doing something toward the bottom of their slice

Better Stories 53

of functionality is important, but only to the extent that it
is necessary to support that slice of functionality.

If we could build software the same way users think about
(and use) software, we could deliver value much more
quickly. It is a beautiful thought, but everyone knows you
cannot build a house by fully completing one room at a
time. You cannot just slice the building project up like
that. For that matter, you can’t just create one slice of
a multi-layer cake. You must start at the bottom, right?
Absolutely–if you are building a house or a cake, but we
are developing software. Code is not at all constrained by
the same physical properties of buildings and desserts.

We actually can build a slice of functionality in software.
If it seems hard to do, it is because we are too set in
our ways of thinking of writing code as a construction or
baking project where you have to complete one layer before
putting anything above it. If you want to think of writing
code in terms of some other activity, think of writingmusic.
Bach did not have to write the entire lead voice in a fugue
before he could go back and put the other voices in layer
by layer. Instead, he could write a few bars for all the parts
and try it out before moving on. Or, think of a symphony.
Composers do not write hundreds of bars of bass drum
before going back to add the next instrument. Instead, they
write music several bars at a time. They may even finish a
section and have it played to decide if they should continue,
rework that part to make it better, or rethink their life
choices. They work on creating valuable slices the same

Better Stories 54

way that users think of our applications—-the same way
we should develop our code.

Just because you cannot do something
when building a skyscraper does not mean
it is impossible in code. Just because you can
do something when writing a fugue does
not mean you can do it when baking a cake.
Analogies can be a great thinking tool, but
make sure they are not limiting what you
think is possible.

Splitting Stories

The size of a story can vary from team to team, but a
reasonable starting place is creating stories that represent
a few days worth of work. This may sound like a contra-
diction. We just discussed creating stories that represent an
entire slice of user functionality, and nowwe are saying the
slices should not take more than a few days. How can you
create something useful for a user in a few days when you
do not even have your database layer setup?

This is where the skill of splitting user stories becomes
valuable. Yes, it is hard at first, but it is possible. If you
can take a story that is going to require more than a few
days and split it into several stories that are shorter, then
you have done two things. First, you’ve created smaller

Better Stories 55

units of work, so you can keep everything close to the same
size. Second, you have now created the chance to prioritize
the stories differently. This is a very valuable approach for
the user because, if some of the resulting stories are lower
priority and can be deferred until later, the user can instead
focus on stories that are of higher value. Splitting stories is
a way to increase the user return on investment.

How do you split stories? If we look back at our music
example, we can find some ideas. Many composers of large-
scale works would write the most important parts of their
ideas in slices (measures) at a time for a reduced number of
instruments and then come back and fill in the supporting
parts once they had proven out the overall idea. Theywould
write the 20 percent that gave 80 percent of the value and
then come back later and enhance it.

There are some pieces of functionality without which no
value has been created. There are others that are very
important but their absence does not block value. Think
about a checkout process for a web store. You add items
to a cart, click the checkout button, log in so you do not
have to type in your address, choose how you want to pay,
type your payment information, and finally complete the
purchase. Is there anything in that process that could be
left out in providing the first slice of value? What if we did
not bother with the login? Everyone can just type in their
information to check out. We could also only implement
one type of payment. It might even be possible to do away
with the idea of a cart and just have a buy button that takes

Better Stories 56

you to the payment page to purchase one item at a time.

So what started out as a sizable story is now a matter of
putting a single button on each product page that leads to
a second page that lets you checkout. Perhaps you do not
want to deploy it into production until it supports some
additional features, but a user can try it out and definitely
see that there is more value there than before. People can
actually buy products which is a pretty valuable thing to
add even if there are lots of enhancements coming later.

Now, you might look at this and say it is way too small.
You can add a button and a single page in 45 minutes.
Remember, we are building the full slice of functionality.
That means you’ll need to set up your data layer to handle
recording the transaction. You may also need to get a cer-
tificate and turn on SSL to get the credit card processing to
work. Many things need to be built to make this seemingly
small story work. Of course, that is the point. You have to
make the story small because you are going to have to touch
a bunch of other layers to get it to work.

It is extremely unlikely you will make your
stories too small early in a project when
using a story template as shown above.

With the rudimentary capability to buy a product, users
can figure out what is the next most important piece of
functionality they want to be able to exercise. Maybe it
is the ability to buy more than one product at a time.

Better Stories 57

Perhaps they would rather see some part of the backend
that displays the order so it can be shipped. By splitting the
story to something smaller, they now have options on what
to do next that they would not have if everything was all
in the same big story.

Automation
• Working software is the primarymeasure of progress.
• Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

• Continuous attention to technical excellence and
good design enhances agility.

• Simplicity–the art of maximizing the amount of
work not done–is essential.

A micromanaged team that does not have the right tools
and is being measured by something like hours worked, or
lines of code written will probably not have a lot of in-
centive to automate their work. However, we want a team
that is dedicated to technical excellence, trusted to get the
job done, trying to make things as simple as possible, and
only counts working software as the measure of progress.
Such a team will automate everything possible to make the
process more efficient.

Any process that is error-prone, time-consuming, easy to
forget or generally disliked is a good candidate for automa-
tion. You want to avoid spending 100 hours automating
something that will save you 5 minutes a year, but most
software projects have no shortage of tasks and processes
where automation yields significant efficiency gains.

Automation 59

The following is not meant to be an exhaustive list of
everything that can be automated, but it should give you
some general ideas.

Build Automation

Developers should be building their code many times an
hour, so this is a great place to apply some automation.
At the very least it should be possible to build and test
your code by executing a single command on the com-
mand line. Developers should be able to type a single line
and build and test the entire application. Depending on
the complexity of your application, this can be trivial or
relatively complicated to implement. If you have tests that
require a database, the ideal approach is for the build to
handle setting up some type of database to test against. If
you have a web user interface that tests run against, your
build should stand up a web server and whatever other
resources are necessary to execute the testing.

Fortunately, most build tools are designed to handle these
types of situations, but it can take some time to get them
working just right. However, the benefits of a single line
build will continue throughout the life of the project.

With a single line build in place, it becomes significantly
easier to add other automation like continuous integration
and configure it to trigger a build and testing on every
code update in version control. The goal of this type of

Automation 60

automation is to make sure a developer gets notified if
they accidentally check in a change that will break the
build for others. Continuous integration can also check for
compliance with security standards or other requirements.

This type of automation is crucial because the faster a team
discovers a problem after it occurs, the easier it is to fix. The
more time that elapses, the harder it is to identify the cause,
the longer it takes to fix, and the more people are impacted.

I described a single line build, but what about using an
integrated development environment (IDE)? Why not a
single click build from within the IDE? I have seen many
situations where the single line build makes it much easier
to troubleshoot whether a problem is with the build or with
your development tools. If there is always the ability to
go to the command line and fire off a build, it is easy to
tell if a problem is with the code or something in the IDE.
Also, if you have multiple people working on a software
project, you are going to need a way to integrate everyone’s
changes, run the build, and test them. Typically you want
this to be done on a separate machine that is watching
for new code and then kicking off a build whenever a
developer submits a change. This is called a continuous
integration server, and most of the systems that manage
builds like this are not going to fire up an IDE and click
on the build button. They are going to use the same mech-
anism you use for a single line build from the command
line.

Automation 61

Deployment Automation

Many projects invest significant timemanually going through
the process of deploying software to servers in various en-
vironments. If you are simply going to deploy the software
once, thenmaybe spending a few hours deploying it is not a
bad use of time. However, if you want to be able to deploy
small changes frequently, if your principles say that you
are going to prefer deploying on shorter time frames, then
the cost of deployment can easily become the bottleneck in
getting new functionality to the user.

There are many tools for deploying code to servers. It can
be as simple as a deployment script that gets executed by
your continuous integration server or as complicated as a
full DevOps ecosystem. The point is that you need to rec-
ognize that to be Agile you must have the ability to deploy
frequently, and requiring a large investment of manual
effort for each deployment will make that impossible.

Continuous delivery is a workflow that keeps your code
in a ready-to-release state. At any time you can deploy
the current release to production. Typically this means
setting up all the automation to build the code, test the
code, create the deployment artifacts, and deploy them to
a pre-production environment. With continuous delivery,
automation takes any change to the code and “delivers” so
it can be deployed to production. The actual deployment to
production may be a matter of pushing a button or running
a command.

Automation 62

Continuous deployment is the next logical step after con-
tinuous delivery. Changes are not only delivered ready for
production–they are deployed to production. When you
have a well designed automated process for lower environ-
ments, there is usually little technical difference between
continuous delivery and continuous deployment. It is just
a matter of repeating what done in the pre-production
environments. However, there are often significant gover-
nance issues involved in deploying to production, so the big
barriers are often political.

I coached a project for the US Treasury where there
was a requirement that all deployments to produc-
tion be done by someone in the change management
department. This prevented full continuous deploy-
ment automation. Still, we were able to make the
entire complex deployment process run with a single
script. Running that script became the responsibility
of the change management individual. It was not
continuous deployment but still achieved 99% of
the benefit while still meeting governance require-
ments.

It is common to encounter resistance to the idea of au-
tomated deployments. Big organizations often have many
people involved in the way software is deployed that may
not be excited about using automation to do what they
feel is their job. Maybe you are not able to get enough

Automation 63

support to use automated deployments on production at
first, but you can still establish a track record in your
development and testing environments. Once you have
something working and proven, it is easier to make a case
for using the technology in production.

Tool Automation

Teams have all kinds of little unique things they need
to do that can be automated. For example, I have seen
teams build automation tools to replace the manual process
of registering the IP address of team members who were
working from home for the day. Other teams have created
scripts to handle the way developers need to set up their
environment, install organizational security certificates,
bring up and down test environments, choose who is going
to run the daily face-to-face meeting, or automate some
convoluted change management processes for registering
the use of a new software library.

To get the best use out of these little automation scripts and
programs, they need to be checked into version control in
a location where the whole team can use them. Not only
does this let others benefit from the work, but it is easier to
justify spending time building a small helpful tool when it
is going to save time for the whole team.

Testing
• Working software is the primarymeasure of progress.
• Welcome changing requirements, even late in de-
velopment. Agile processes harness change for the
customer’s competitive advantage.

There are many different ways to test software. It can be as
simple as a developer running through what they think the
user will do, or as complicated as an automated test suite
that tries every button and text field while measuring what
code gets executed and what does not.

The two principles above are very hard to follow without
some type of automated testing. If working software is our
primary measure of progress, we need some way of easily
knowing if we have working software or if something is
broken. Of course, you can do manual testing to prove the
software works, but as the size of the application grows
so does the time necessary for testing. If we want to make
it easy to make changes even at the last minute, we need
to have some way to quickly show that changes work as
expected and not cause any unwanted side effects. This is
hard to do if your test suite involves three weeks of effort
by a team of testers. The only way to get a competitive
advantage from making changes quickly is to have an
automated way to verify those changes.

Testing 65

Having automated tests does not mean there is no human
testing the application. You still need people to actually
use the software and think about whether or not it will
make sense to the end user. However, automated tests
can let those people focus more on how the application
works overall and less onmundane testing like trying every
possible combination of filling out a form.

Automated Tests

Automated tests are tests that you can start and runwithout
requiring your input. Ideally, these should be part of the
build so they can be run by developers locally as well
as on a continuous integration server. If your project is
configured correctly, a developer should be able to launch
a complete run of all the tests with a single click or single
line command. The sooner developers can discover that
something is broken, the easier it is to fix. The easier it is
for them to run the tests, the more often they will run them.

A well-tested application may take a long time to run all
the tests. It is common for well-tested projects to end up
with enough tests that it takes several hours to run on
a developer’s laptop. This does not remove the need for
having a one-step process to kick off the tests even at two
hours–developers may need to sometimes run all the tests
before committing their work. However, tests should be
organized in ways that allow developers to test the part
of the code they are working on locally before checking

Testing 66

in and letting the full suite of tests run on the continuous
integration server. A code base that is organized into logical
modules makes this much easier to do. If organized well, a
developer who makes a change to one module should be
able to run the tests on that module and have fairly high
confidence that they did not break something somewhere
else before handing it over to the continuous integration
server to verify this assumption.

Types Of Tests

There are three general types of tests. Each type concen-
trates on testing a different aspect of the software. Unit tests
are focused on testing a small unit of code. Integration tests
are focused on how the pieces come together and integrate
with other services. Behavioral tests are focused on how the
software behaves from the user’s point of view. Notice that
we say these tests are focused on these different things. In
practice, there can be a good deal of overlap between the
three types of tests.

Unit Tests

Unit tests are designed to exercise a tiny unit of software
and verify it does what the developer expects. Unit testing
might test that a particular method returns the proper
valueswithout trying to set up the entire application. A unit
test typically does not need a database, web server or other

Testing 67

infrastructure in place in order to run. For example, a unit
test for a function that transforms the output of a database
shouldn’t require setting up a database. The unit test should
provide the value that would come from the database and
then check the result. A unit test that verifies the ability
of a method to create an email, should not actually require
access to an email server to run.

There are many ways to “mock” the various pieces that
these tests need, but if your application is designed well,
you should be able to have unit tests for the various pieces
of functionality with a minimal need for mocking out
external services. In fact, one of the big advantages of test-
driven development is the way that it tends to force you to
write code that is modular and logically organized. Code
that is not written in this way can be very difficult to test
in small units that aren’t dependent on other parts of the
application.

Since unit tests are focused on testing very small units of
code, they should run very quickly. Developers should be
able to run the unit tests for the code they are working on
in no more than a few seconds, and it is not uncommon
for the unit testing run-time for hundreds of thousands of
lines of code to be measured in seconds or a few minutes.
The goal of unit tests is to give each developer the ability to
quickly tell if a piece of code does what is expected and if it
has any side effects on other code. Unit tests do not need to
be something that users can understand because they deal
with the internals of the software. Different types of tests

Testing 68

deal with things from the user perspective.

Integration Tests

While unit tests focus on small units of functionality, inte-
gration tests cover how the pieces come together—how they
integrate. Where unit tests might verify that a particular
piece of code can transform data correctly without fetching
it from the database, integrations tests would actually
exercise that particular service with a database running
and make sure that all the parts work together as expected.
Where a unit test might test that a calculation is done
correctly, an integration test might stand up a server and
validate that the API accepts a request, does the calculation,
and responds appropriately.

If you have designed your application with services that
depend on each other, integration tests are going to test
that these services all hook together and behave correctly.
Obviously, these types of tests are going to run much
slower than unit tests. Integration tests will probably make
a little more sense to a user than the unit tests. A technical
user will probably be able to see some of the business rules
expressed in these types of tests. Still, integration tests focus
mostly on things that are happening behind the scenes from
the user experience.

Testing 69

Behavioral Tests

Behavioral tests look at the application from the user’s per-
spective. They should confirm that the application behaves
as the user expects. Of the three types of tests, behavioral
tests are typically the slowest to run because they come the
closest to exercising the application the same way a user
would.

For behavioral tests to be effective, they need to be written
in a way that users can understand without becoming a
programmer. This could be as simple as writing comments
in the test code to tell the user what is happening, but there
are a number of frameworks and tools like Cucumber that
allow users and developers to specify what the application
should do in natural language and then link it to code
that exercises the application. This becomes an executable
specification of the software.

For example, a Cucumber scenario might look like this:

Given I am on the demo page
When I convert the Arabic number 5
Then the roman numeral V is displayed

or

Given I am an unpriviledged user
When I navigate to the settings page
Then a 403 error is shown

This format gives users and developers an excellent way
to collaborate in discussing the features of the application.

Testing 70

The developer will then make this document executable by
providing backing code which causes the natural language
to execute against the application.

Not only do behavioral tests provide a way to test the
application, the natural language aspect makes them an
ideal reference of what users should expect the application
to do in various circumstances. Unlike a document that
gets out of date, the executable specification shows not
only what the software is supposed to do, but what it is
actually doing. If the software stops behaving the way that
is specified, the tests will break and the build will fail.

Why Test?

As we have discussed, the why is very important to get
value from any practice. Testing isn’t an end in and of
itself. Testing lets us show that the software is working.
Since Agile says that working software is thewaywe define
progress, testing allows a team to know if they are making
progress or not. If you have worked on enough software
projects, then you have doubtless seen projects that lacked
tests where changes to one area broke existing functionality
in another part of the application. I have actually seen
projects that would spend a week developing code only to
find that the software had less working functionality than
it had at the beginning of the week. The new functionality
may have worked, but so much was broken in the process
that progress went backward in terms of working software.

Testing 71

As a teenager, I took a summer job with a roofing company.
There was one very old roof in terrible shape where any
effort to fix one leak would end up creating three more.
The next time it rained, the new cracks were found and had
to be fixed. However, the fix only created more leaks. They
needed some way to make sure that fixing one problem did
not make things worse. That is what tests do for software.
They make sure that you can protect the progress you have
achieved. Then future work moves you forward instead of
backward.

This is especially true if you want to “welcome changing
requirements.” If you are trying to follow Agile, it means
the customer is going to have a lot of flexibility in changing
the target. There is simply no sane way to handle that type
of fluctuation without being able to quickly tell if software
is doing what it is supposed to be doing or not. If it takes
six weeks to test your software manually and you really
do not know how much progress you’ve made until the
testing is done, then you are not leveraging change as a
competitive advantage—no matter how quickly you can
pivot onwhat is being developed. You simply cannot obtain
feedback on your progress and use it for making useful
decisions without a good automated testing strategy.

Deliver Small Changes
• Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

• Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference to
the shorter timescale.

• Working software is the primarymeasure of progress.

To continuously deliver valuable software, we have to deal
with smaller changes. Short timescale delivery of working
software requires a way of delivering small units of func-
tionality all the way into production on a regular basis.

We already talked about the need for small stories. Not only
should your stories be small in size, but you also should be
able to deliver a small number of stories at a time. This
requires an automated approach to software delivery that
can be difficult to justify for teams that only plan to deliver
software a few times each year.

Risk In Development

Any time youmake a change to software, there is a risk that
the change will have unwanted side effects. Automated
testing can dramatically reduce this risk, but it is always

Deliver Small Changes 73

present. If you release two small changes, then there are
two ways they can interact with each other. If you release
four changes, you now have 12 possible interaction points.
By the time you get to 12 changes, you have 132 possible
interaction points.

Deploying two small changes to production is not as risky
because there are so few things that can go wrong. With
just a few changes, it is much easier to look at the code that
is going to change and agree on what those changes will
do. You can mentally reason about what is going to happen
if you are moving a system from a known working state
to a slightly different state where the changes are small
enough you can easily understand them. Even if a bug slips
through, the effort required to identify the problem when
you are dealing with 20 lines of changed code is much less
than when dealing with 5,000. Not only is it easier to figure
out, but it is easier to fix. When you are trying to deploy
a new version with a massive number of changes, you lose
this luxury.

Deployment Frequency

We can say we want deployments with a small number
of changes, but it is important to recognize the logical
consequences. Small deployments almost always imply
frequent deployments. If you want to deploy changes to
fewer lines of code, you must increase the frequency of
your deployments.

Deliver Small Changes 74

Let’s say you are currently deploying code once each
month that represent changes we can quantify as about 800
hours of development effort. If you want your deployments
to represent something closer to 100 hours of development
effort, you will need to change your deployments from
once per month to twice each week. Otherwise, the team’s
ability to deliver functionality is going to vastly outpace
your ability to deploy. The other option would be to discard
7/8ths of your development capability.

We can represent our risk on the development side with
this graph. To make the risk go down, we have to increase
the deployment frequency.

Development risk vs. deployment frequency

Most organizations see the value of making a small number
of changes to the system and agree in principle that there is
value in delivering software on shorter timescales. We have
focused on the risk associated with big infrequent changes

Deliver Small Changes 75

to the code, but there are significant business advantages as
well. Where we start running into trouble is when we look
at what else needs to change in order to fully support doing
this–in particular, the way most organizations handle the
deployment of software.

Risk In Deployment

While most companies recognize that deploying a large
number of development changes increases the risk that
something will go wrong, they usually justify their ap-
proach by pointing to the number of things that have gone
wrong in the deployment process. If deployments have a
high risk of breaking something, they reason that risk can
be lowered by deploying less frequently. If there is a 50%
chance that a mistake will occur in deployment, then doing
two deployments creates a 75% probability of a mistake.
This leads to the perception that frequent deployment
necessarily increases risk.

Deliver Small Changes 76

Deployment risk vs. deployment frequency

Organizations that see deployment risk in this way have
the goal of balancing the development risk of new code
doing something unexpected with the deployment risk
that something will go wrong while putting the new ver-
sion into production. Since the more frequently code is
deployed, the smaller the number of changes in each de-
ployment, you end upwith a risk vs. deployment frequency
that looks something like this graph. These organizations
usually try to achieve a deployment frequency somewhere
around the intersection of the two arrows. This is rational
behavior if you assume that the risk profiles for devel-
opment and deployment are both fixed and slanted in
opposite directions.

Deliver Small Changes 77

Deployment risk vs. development risk

There are two problems with this. First, it assumes that
the deployment process is necessarily a high-risk event.
Second, it overlooks the fact that doing deployments in-
frequently means the process is less well known and less
exercised, so the infrequency actually increases risk.

Reducing Risk

Clearly, it would be better if both of the risk arrows
sloped in the same direction. We can lower the risk of
the development by more thorough testing, but it does not
change the slope of that risk. It is still going to be less risky
to release fewer changes at a time from the development
point of view. However, deployment is a different story. If a
team only deploys twice a year, the payback of automating

Deliver Small Changes 78

the deployment is very low and the risk of a missed step
or something not working correctly is very high. On the
other hand, for a team that is deploying every day, the
cost of doing things manually is simply too high to justify,
and there is a significant return on any investment in
automation. If we want to reduce the risk of deployment
we must create a deployment process that is designed
to be robust, failsafe, and efficient. This is done through
automation and deployment testing.

DevOps is the movement representing practices that pro-
mote this approach. From an extremely pragmatic view,
your deployment process needs two things. First, you need
a way to automate the deployment process. Second, you
need a way to test the deployments. Automation can be as
complicated as a full implementation of DevOps tools or as
simple as writing deployment scripts. The important part
is to make sure it handles the entire deployment process.
If you have scripts to deploy your code, but you still need
a DBA to manually run updates to the database you have
not really achieved automation.

From a testing standpoint, you should not be testing your
deployment in production. The risk is simply too great for
production to be the first place the deployment process is
exercised. Staging environments that use the same deploy-
ment tools and processes lower the chance of something
unexpected happening in production. We test our code to
make sure there are no bugs. We need to do the same thing
to the steps and procedures that deploy our code.

Deliver Small Changes 79

Aligning Development and
Deployment Risk

If these two pieces are implemented properly, you can
change the slope of the arrow of the deployment risk to
match the slope of the development risk. This change in
slope is possible because once you have automated and
tested your deployments, there is less risk in exercising
that mechanism often and more risk in only exercising it
infrequently. If you are exercising your deployment scripts
and processes every week and something does not work in
one of your testing environments, you only have a small
number of changes since it last worked correctly. On the
other hand, if you have six months of changes, it will
be exponentially more difficult to figure out what went
wrong because of the large number of changes that have
accumulated.

Deliver Small Changes 80

Deployment risk and development risks aligned

Once you have the slopes headed the same direction, the
conflict between development risk and deployment risk
goes away, and you can now work toward lowering both
types of risk by increasing the deployment frequency and
lowering the number of changes deployed at the same time.
With this in place, the team can work toward continuous
delivery of valuable code, frequent delivery of working
software, and counting working software as the primary
measure of progress—all Agile principles we listed at the
beginning of this chapter.

Understanding Business
Value

• Welcome changing requirements, even late in de-
velopment. Agile processes harness change for the
customer’s competitive advantage.

• Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

These two principles are interesting because they provide
something of a litmus test development teams can use to
determine if they are actually trying to be Agile.

Imagine the following scenario. Your team has been work-
ing very hard to get the first usable piece of a new feature
completed and deployed to production. Your customer
comes in one day and says, “So that thing we told you was
really important? It turns out to not be as important as we
thought, but we’ve got this new set of features that wewant
to start working on instead.”

How does your team react?

A. “Why can’t they get their act together and figure out
what they want us to work on. They obviously don’t
have any idea what they are doing.”

Understanding Business Value 82

B. “That sounds great! Good thing we can just switch
what we are working on because this change sounds
like it will drive a lot more business value.”

If your organization is really tuned for agility, if your
developers are working closely with the business owners,
if you have established a strong foundation of trust that
can only come from good transparent communication, then
your team should be able to react to the change in a positive
way.

Most developers feel valuable because they can write code
that works correctly. Far fewer see their value in providing
a competitive advantage by changing what they are work-
ing on quickly. When developers do feel this way, it is a
sign of a healthy Agile mentality and strong collaboration
between the developers and business interests. Developers
will not feel this way unless they understand the business
value that is driving the code they are creating.

I routinely see teams of developers make big changes to the
way that they are developing software. I have seen teams
suggest rewriting significant portions of the code base to
use a new framework or even rewriting the entire appli-
cation in a new language. Sometimes I am amazed at how
easy it is for a team to reach consensus to do significant
rework in order to make technical improvements. Why is
this?

Within a development team, there is communication. There
is discussion. There are arguments. There is debate. De-

Understanding Business Value 83

velopers can reach agreement on the value of even deep
technical changes because they are immersed in the details.
They understand the tradeoffs, the costs, and the value of
technical changes.

For a team to welcome changes, they must know enough
about the cost and value of those changes to truly under-
stand the business value of what they are doing.

A story is told of two assembly line workers doing
similar work in two different companies. When the
first was asked what he was doing, he said he was
screwing two pieces of metal together with a bolt and
nut. The individual in the other company said, “I’m
building cars!”

If developers are going to really embrace change they must
understand the drivers of change. They must understand
how the code provides value in the big picture. It is easy
for developers to understand the value and costs of change
driven by technical considerations. To embrace change
driven by business considerations, developers must under-
stand the business value of the code they write.

This can be much more difficult than it initially sounds. A
recent conversation I had with some developers concerning
testing highlighted this difficulty. A few developers were
talking about optimizing all tests for greatest speed. While
I agreed to a point, I commented that the testing needs to

Understanding Business Value 84

be done with an understanding of how it provides business
value because ultimately that is the goal. This was not very
popular. At first, I was surprised my statement didn’t have
universal acceptance, but, if I put on my developer hat
and think about “ideal” software development, I can easily
prioritize “perfect” software engineering over the business
value the software development process provides.

Change is hard. Do not expect it to be easy, but when
everyone can clearly see how their efforts are creating
business value, it lays a foundation to align technical skills
with business needs in exceptionally valuable ways.

Sustainable Continual
Improvement

• Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

As we close this short book, it is important to remember
that Agile is not something you achieve and then move on.
Agility is an ongoing process. The moment a team feels
they have “arrived” and no longer have to work hard to
respond to change is the moment where they stop being
Agile. This is why I tend to be a bit suspicious of Agile
“transformations.” A “transformation” is something that
is easy to sell because it has a start and an end. After
that, the transformation is “complete.” Successful Agile
teams are those that have nurtured and honed their culture,
environment, and attitudes to adapt to unknown future
change. An Agile team is a team that is prepared to evolve
quickly. If the result of a “transformation” is a team that
has started this evolutionary process, then I can get behind
that. However, if a team is simply transformed from one
set of rigid rules to another not quite so rigid, it misses
the point. That does not mean that transformed-but-not-
evolving teams will not see any benefit, but it is not the
same as a team that is truly prepared to adapt going

Sustainable Continual Improvement 86

forward.

This long-term ability to adapt is essential. Many of the Ag-
ile principles imply this type of thinking, but the principle
shown above is much more explicit. It points toward the
need for teams to be able to operate over long periods of
time and continually adjust and improve.

So much software creation is exceptional, and I do not
mean that in a good way. It is exceptional not because
it is above average in quality or some other metric. It is
exceptional because success is only realized by doing all
kinds of things that are exceptions to the way everyone
agrees we should be producing software. Teams are asked
to work weekends for extended periods of time. Individuals
are expected to work 70-hour weeks on a regular basis.
Schedule slips result in cutting testing or other important
quality functions. All of these things are exceptions to the
way we know we should work and it isn’t sustainable.

That is not to say that there will never be any exceptions in
creating software—the whole point of Agile is responding
to change—but many projects begin with plans that are
clearly unsustainable. Agile processes help promote habits
that are sustainable, but the gains need to be invested in
creating better efficiency—not just going back to unsustain-
able practices, but this time starting at a higher threshold.

This book covered a number of practices that can be very
useful ways to follow Agile values and Agile principles,
but always remember that if you want to be Agile you
have to focus on what works for your team. If your team

Sustainable Continual Improvement 87

just takes practices you see in other teams and tries to
mimic the actions without understanding the principles,
you are doing the same thing as the guy wearing coconut
headphones trying to wave planes down from the sky.

You have probably heard the story about five chimpanzees
placed in a cage with a banana at the top of a ladder.
Whenever a chimp goes for the banana, all of the chimps
get sprayed with cold water. Soon all the chimps ignore the
banana. Then one of the chimpanzees is swapped out with
another. This new chimp sees the banana and heads for it
only to be attacked by the others who do not want to be
sprayed with water again. The chimps are exchanged one
by one until none of them have ever been sprayed by water,
yet they have all learned not to go for the banana and to
attack anyone who does.

As far as I can tell, no one ever conducted such an exper-
iment. I do not work with chimpanzees so I have no idea
whether they would actually behave like this. I do work
with humans, and we (myself included) do stuff like this
all the time. I have had people get angry when I asked why
the team was following a particular practice. I definitely
remember being in situations where I felt like the mythical
chimpanzee who got attacked. “Well, I guess I found out
what happens if you bring that up!”

You must be willing to tweak and improve your practices
when you find they can be adjusted to better follow Agile
principles and the only way to do this is to make sure
you are always asking why. If you are not doing this, you

Sustainable Continual Improvement 88

are not following the spirit behind Agile. When everyone
knows why you are following a particular practice, it sets
up an environment to change, adapt, and improve over
time. It keeps everyone focused on the value that practice
is providing and what principles it is supporting. Without
this, it is easy to start to believe that the practice itself is
the goal.

Whether you are just starting yourAgile journey or looking
to tune your existing efforts, always stay focused on the
reason behind each action. That is the only way to contin-
ually improve your effectiveness as an Agile team.

Glossary
Rather than simply define words previously presented in
the book, this glossary is an attempt to provide some gen-
eral definitions of terms likely to be encountered by teams
starting out with Agile. Many of these terms have nuances
that cannot be fully explored here, but these definitions
should provide a reasonable starting point.

For many, the real value of this list of terms may be less as
a reference to find definitions and more as a starting point
to find the names of new practices, tools, and approaches
that merit further research to help solve the particular
challenges your team is facing.

Acceptance Test Driven Development (ATDD)
A practice where development is not started until
there are clear descriptions of how the user would
verify that a new feature is implemented correctly.
The development work is then driven by these de-
scriptions. The descriptions may or may not be au-
tomated. Behavior Driven Development is a specific
way of doing Acceptance Test Driven Development.

Agile
A set of principles and values codified in the Agile
Manifesto by a group of 17 individuals who had
come together to talk about alternatives to heavy

Glossary 90

weight documentation driven software development
approaches.

Backlog
A list of work to be done. When a team has capacity,
items are selected from the backlog to be worked on.
Prioritization of the backlog determins which fea-
tures are developed next. This prioritization process
should be driven by the business interests.

Behavior Driven Development (BDD)
The practice of driving development based on the
desired behavior of the system usually from the
standpoint of user action and expected result. This is
done through an executable specification written so
non-developers can understand the desired behavior
of the system. By executing the specification, the
application is shown to function in the desired way.
This approach is useful in the process of defining re-
quirements and in limiting the scope of development
work to exactly what is needed.

Continuous Delivery
The practice of taking every change to a code base
through a build, testing, and deployment process.
The build is typically deployed to an environment
that is similar enough to production to prove that
the release and deployment will work in production.

Continuous Deployment
A practice that builds on continuous delivery by

Glossary 91

automatically deploying each build to production
once the code and deployment process has proven
it works correctly.

Continuous Integration
The practice of regularly integrating the work from
all developers and testing it. Usually this is done on
a continuous integration server that is set to do a
full build and execute automated tests each time a
developer checks in a change to the code base.

Cycle Time
The amount of time between a cycle. This could be
a repeating process like the delivery of a release to
production. It could also be the time between two
well-defined start and end points. For example, the
point where work is requested and the point where
work is completed. See lead time, velocity.

Definition of Done
The criteria the team has agreed upon to say that
a particular user story is complete. Agreement on
this definition avoids situations where work that is
thought to be complete ends up requiringmore effort
before it can actually be used. Some teams will con-
sider work to be done once it has been programmed,
integrated with the rest of the code base, and fully
tested. On other teams, features are not considered
done until they are deployed to production and in
use.

Glossary 92

DevOps
The practice of taking useful approaches from de-
velopment and applying them to operations. This
includes the use of source control, automation, and
testing. It also encourages the view that development
and operation processes should be more collabo-
rative with a focus on delivering customer value
rapidly and safely.

Extreme Programming
Extreme programming is anAgile development frame-
work. It grew out of an effort by a team at Chrysler
to take practices that produce better software and see
what would happen if they were done in extreme
ways. For example, since automated tests help pro-
duce better software, the team took the extreme step
of writing tests before the code was even written.
This practice is called test driven development. Since
code reviews were known to increase the quality of
software, the team started conducting real-time code
reviews with two people working together to write
code. This practice is now known as pair program-
ming.

Integration Test
A test that verifies that the integration of various
functions works correctly together. Instead of testing
a single method or function of code, integration
tests verify that the pieces of an application work
together. Often this means testing that code executes

Glossary 93

that needs to talk to a database or application server
and that all the different parts integrate together. See
unit test.

Iteration
A cycle in software development that typically cul-
minates in delivering features that are ready for the
user. See sprint.

Iterative Development
A cyclical process where software is delivered in
smaller units rather than all at once at the end of
the project. This allows feedback fromwhat has been
built to be incorporated into the next cycle. Iterative
development contrasts with waterfall development.

Kanban
A system to balance work capability with demand
invented by Toyota to improve the efficiency of
inventory and assembly work. It was inspired by the
way that grocery stores were able to minimize waste
of perishable goods while still meeting customer
demand. Kanban literally means “sign” and was the
name of the signal cards passed back and forth on
the factory floor to request that parts be moved to
where they were needed and reordered as necessary.
Kanban provides a means of optimizing the flow of
work through a system. It is particularly useful in
making the overall system efficiency more transpar-
ent and avoiding situations where high utilization of

Glossary 94

individual parts of the system create inefficiencies in
the whole.

Kanban Board
A visual representation of work in a Kanban system.
This is especially useful in knowledge work where
there aren’t physical parts, supply bins and inventory
stations where physical cards can be attached and
removed. A typical Kanban board for software will
show pieces of functionality moving from planning,
to development, to a completed state, to deployment.

Kanban Method
Typically refers to a method built around applying a
Kanban system to knowledge work. Kanban method
is best seen as a process that uses Kanban systems
to make continual evolutionary improvement with
a focus on the continuous flow of work rather than
iterations.

Lead Time
The time elapsed between the placing of an order
and delivery of that order. In software, this typically
measures the cycle time between a feature being
requested and when it is delivered. There is some
degree of variation in the precise start and end points
used by different teams. For example, some teams
start measuring when a feature is requested, while
others start when work is begun. See cycle time and
velocity.

Glossary 95

Pair Programming
A practice from Extreme Programming where two
developers work together to write code. Typically
this involves two people physically working at one
computer and discussing the code as it is written.
Pair programming comes from the idea that code
reviews are so valuable that there are situations
where doing them in real-time is more efficient than
having two people work separately and then doing
code reviews after a feature is developed.

Persistent Chat
An approach to facilitate shared knowledge in dis-
tributed teams using an on going group chat with all
team members. Rather than having chats between
individuals, they are done in the chat where all
members can read them. This attempts to some-
what reproduce the ability to overhear conversations
in a teamroom that help disseminate information
through a team.

Persistent Video Conference
An approach to creating the experience of a team
room with distributed teams. Each team member
participates in a video conference with the rest of
the team during their working hours every day so
everyone can hear and see each other. A persistent
video conference may also be used to link multiple
team rooms together with each other and with re-
mote individuals.

Glossary 96

Retrospective
A common ceremony on Agile teams where they
reflect on how well their practices are working and
try to find ways to work more efficiently going
forward. Often these are done at the end of a one
or two-week iteration.

SCRUM
SCRUM is a framework for team collaboration using
an iterative process referred to as sprints. A sprint
consists of a planning phase where work is selected,
a work phase, a demo for stakeholders, and a retro-
spective. This process is repeated on a regular basis–
typically every one or two weeks.

Stand-up Meeting
A common ceremony on Agile teams where every-
one meets face-to-face once each day for 15 minutes
in a standup meeting with the goal of moving work
forward in the process.

Story Points
A way to compare relative time it will take to com-
plete specific user stories. A story that has been
assigned four story points should take about half as
much time to complete as a story that is assigned
eight story points. A number of other terms are
used to represent this same idea. “Gummy bears” or
“NUTs” (nebulous units of time) are two other terms
that serve the same purpose.

Glossary 97

Sprint
An iteration in SCRUM that typically lasts one or
two weeks. A sprint is a single cycle in the iterative
development process used by SCRUM.

Team Room
Space assigned for a team to work together in order
to maximize face to face communication.

Test Driven Development (TDD)
A practice where production code is only written in
response to a failing test. To create new functionality,
a developer first writes a test that would pass if the
functionality existed and runs it to verify that the test
fails. The production code is written in order to make
the test pass. The approach can benefit efficiency by
focusing work on small incremental changes and in
many cases helps produce code that is modular and
easier to modify in the future.

Three Amigos
Refers to three points of view that need to be rep-
resented in the discussion of new features. The first
point of view is that of the business. The business
can speak to the value of a proposed feature, what
it is supposed to do, and understand the impact of
proposed trade-offs. The second is the development
perspective. Developers understand the technical ap-
proach to creating a new feature. The third is the
testing perspective which represents the need to
prove a feature works as intended. Efficient balance

Glossary 98

between the cost and value of a particular feature
is much easier to achieve when all three views are
represented in the discussion of new work.

Unit Test
Code written as an automated test that proves a
function or similar small unit of production code
does what the developer expects. Unit tests typically
run quickly and don’t require infrastructure support
like databases and webservers in order to run.

User Story
A simple way of representing development work by
creating a short narrative about what a feature will
look like from a particular user’s point of view. User
stories allow teams to easily talk about a feature at
a level that is reasonably intuitive to understand but
not so detailed that it impedes conversations.

Velocity
In physics velocity is the distance covered in a given
period of time, for example, feet per second. In
software development, velocity refers to the amount
of development work completed in a period of time–
usually an iteration. The amount of work is often
measured in stories, story points, or features.

Version Control
Theway teamsmanage the process ofmaking changes
to the code base. Version control tools allowmultiple
users to make changes to the code base at the same

Glossary 99

time and provide methods to merge those changes
together while avoiding conflicts. Git and Subver-
sion are two common version control tools.

Waterfall Development
An approach to software development where each
stage of work is completed before moving on to the
next. For example, the requirements are fully defined
for the entire project before starting on the design,
etc. delivery of the software occurs all at once at
the end of the project. Waterfall stands in contrast
to iterative development.

	Table of Contents
	Introduction
	What is Agile?
	Agile Decisions

	Becoming More Agile
	Visualize Your Work
	A Simple Board
	Telling Stories
	Story Points and Story Size
	Simple Metrics

	Daily Face-to-Face
	Why Stand?
	How to Run a Daily Face-to-Face

	Talk to Users
	Regular Demos
	Demo Frequency
	How To Run A Demo

	Retrospectives
	A Simple Retrospective
	Retrospective Pitfalls

	Better Stories
	The Importance Of Good Stories
	The User Perspective
	Slices Of Value
	Splitting Stories

	Automation
	Build Automation
	Deployment Automation
	Tool Automation

	Testing
	Automated Tests
	Types Of Tests
	Why Test?

	Deliver Small Changes
	Risk In Development
	Deployment Frequency
	Risk In Deployment
	Reducing Risk
	Aligning Development and Deployment Risk

	Understanding Business Value
	Sustainable Continual Improvement
	Glossary

